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Two
 

types
 

of
 

transient
 

chaos

I. Open

 

dynamics, the

 

system

 

has passed

 

an
external

 

crisis
Ott,  1993

II. Closed

 

dynamics, the

 

system

 

is opened

 

up

 

(leaked) 
artificially

‘Picture an

 

energy

 

conserving

 

billiard

 

table

 

… . Now

 

suppose

 

a 
small

 

hole

 

is cut

 

in

 

the

 

table

 

so

 

that

 

the

 

ball can

 

fall

 

through.’

Pianigiani, Yorke, 1979



Chaotic

 

billiard

 

with

 

a small

 

hole

 

of

 

size

 

Δ

 

along

 

the

 

boundary.

Exponential

 

decay

 

in

 

the

 

probability

 

to

 

escape

 

at

 

time

 

n

on

 

a Poincaré

 

map

pe

 

(n) ~

 

exp(-γe

 

n)

with

 

escape

 

rate

γe

 

= Δ/P=μ(hole)=1/ <n>e

 

,   P: perimeter

 

of

 

billiard
μ: natural

 

measure

for

 

μ(hole)<<1.                                                    Bauer, Bertsch, 1990

3D billiards

 

in

 

real

 

time

<t>e

 

=4 V/(c A),   V: volume

 

of

 

billiard
A: area

 

of

 

leak; c: velocity
Jaeger, 1911

Leaked
 

billiards



Sabine’s
 

law

Wallace C. Sabine (1868-1919),
founder

 

of

 

architectural

 

acoustics: 

Residual

 

sound

 

intensity

 

decays
exponentially

 

in

 

time.

Reverberation

 

time

 

T: duration

 

to

 

decay
below

 

the

 

audible

 

intensity
(a factor

 

of

 

10-6, 60dB) 

1898:       T=0.16 V/A

 

(SI units)

V: room

 

volume, A absorbing

 

area

 

(or

 

equivalent

 

area)  

Independent

 

of

 

the

 

location

 

of

 

source,
of

 

details

 

of

 

the

 

room,
provided

 

the

 

room

 

is ‘well

 

mixing’,  
review:

 

Mortesagne, Legrand, Sornette, 1993



Note

 

that:

T=6 ln10<t>e

 

=6 ln

 

10 4 V/(c A)=0.16 V/A,

with

 

c=sound

 

velocity.

Sabine’s
 

law

Sabine’s

 

law

 

seems

 

to

 

be the

 

first

 

application

 

of

 

the

 

concept

 

of

transient

 

chaos

 

(energy

 

is escaping) and

 

leaking

 

(via

 

energy-absorbing

surfaces).    



Resetting
 

mechanism
Simple

 

model

 

of

 

coloring

 

fluid elements

 

according

 

to

 

their

 

history
(a reaction

 

model)
Pierrehumbert, 1994

Two

 

different

 

dyes

 

maintained

 

at

 

the

 

saturation

 

concentration

 

in

 

the
boundary

 

layer

 

along

 

two

 

plates

 

in

 

a time-periodic

 

chaotic

 

flow.
Dye

 

I (activated

 

state), Dye

 

II (deactivated

 

state) 

Resetting

 

region, Dye

 

I: black

Resetting

 

region, Dye

 

II: white

Neufeld

 

et

 

al, 2000
Resetting

 

is a kind

 

of

 

leaking. The leak

 

is not

 

small

 

:

γe

 

≠ μ(leak),     <n>e

 

≠

 

1/γe



Invariant
 

sets
 

related
 

to
 

the
 

resetting
 

mechanism

Never

 

resetted

 

points

 

(either

 

forward

 

or

 

backward):

chaotic

 

saddle

 

in

 

the

 

leaked

 

flow

Fractal

 

part of

 

the

 

dye

 

boundary: stable

 

manifold

 

of

 

the

 

saddle

 

in

 

the
time

 

reversed

 

dynamics

unstable

 

manifold

 

in

 

the

 

direct

 

dynamics

How

 

do

 

the

 

properties

 

of

 

transient

 

chaos

 

change

 

when

 

changing
the

 

resetting

 

region, the

 

leak?

Leak

 

properties: location, size, shape, orientation.    



Leaking
 

the
 

baker
 

map

The simplest

 

area-preserving

 

version of

 

baker

 

maps

 

with

 

uniform 
hyperbolicity: λ=ln2. 

Consider

 

a single, but

 

extended

 

leak, a band

 

of

 

area

 

μ,
at

 

different

 

tilt angles:

stable

 

m.        saddle

 

unstable

 

manifold

Schneider

 

et

 

al

 

2002

Angle:25°,
μ=0.1.

Angle:-25°,
μ=0.1.



Constructing
 

the
 

invariant
 

sets

Out of

 

N>>1 trajectories

 

keep

 

those

 

who

 

survive

 

outside

 

of

 

the
leak

 

n>>1 steps

 

(N=106, n=40). They

 

come

 

close

 

to

 

the
saddle.

T.T, M. Gruiz, 2006 

Initial

 

points

 

(i=0) of

 

these

 

trajectories: on

 

the

 

stable

 

manifold

End

 

points

 

(i=n): on

 

the

 

unstable

 

manifold

Midpoints

 

(i=n/2): on

 

the

 

chaotic

 

saddle.  



Chaotic
 

saddles
 

at
 

different
 

tilt angles

Tilt angles: 0, 45°, 75°, -45°, -15°, -90°, μ=0.1.

The fractal

 

dimension

 

and

 

the

 

escape

 

rate

 

is angle-dependent.
Note: λ(saddle)=ln2

 

in

 

all

 

cases. 

Schneider

 

et

 

al, 2002



Dependence
 

of
 

the
 

escape
 

rate
 

on
 

the
 

orientation
 

of
 

the
 

leak

Topological

 

entropy: h= λ(saddle)-

 

γe

 

=ln2-

 

γe

 

Kantz,Grassberger, 1985  

Different

 

leaks

 

produce

 

drastically

 

different

 

pruning

 

of

 

the

 

symbolic

 

dynamics.

Naiv estimate:  exp(-

 

γe

 

)= (1-μ), γe

 

= -

 

ln(1-μ)  horizontal

 

line. 
Only

 

valid

 

for

 

μ<<1, when

 

γe

 

=μ.

μ=0.2

μ=0.1



Mixing
 

properties
 

in
 

the
 

Earth’s
 

mantle, via
 

leaking

Thermal

 

convection

 

simulated

 

in

 

a 2D rectangular

 

domain

 

of

 

aspect

 

ratio

 

1:4.
Schneider, Schmalzl, T.T, 2007

Rayleigh

 

number: 107,   Prandtl

 

number

 

: infinite

Flow: irregular, but

 

cellular

 

pattern

 

on

 

average.
Flow

 

with

 

chaotic

 

time-dependence.

Colour

 

coding: temperature, leak: complement

 

of

 

the

 

dotted

 

region



Time evolution
 

of
 

the
 

manifolds

Time: 2 overturns

Time: 6 overturns

Time: 14 overturns

Time: 17 overturns

Explanation

 

of

 

clear

 

fractality:

 

Theory

 

of

 

random

 

maps,
snapshot

 

attractors

 

Romeiras, Gebogi, Ott, 1990

Black: stable

 

manifold
White: unstable

 

manifold



Material
 

exchange

Inhomogeneities

 

remain

 

after

 

10 overturns. 

1 overturn: 400-500 million

 

years! At

 

present, the

 

Earth

 

mantle

 

is inhomogeneous.

The lifetime

 

of

 

Earth

 

(5 109

 

years: 10 overturns(!)) has not

 

been

 

long

 

enough

to

 

reach

 

a well-mixed

 

state, in

 

spite

 

of

 

chaos.  



Dissipative

 

systems: Leaking

 

chaotic

 

attractors. Relevant

 

for

 

the
OGY control

 

of

 

chaos
Paar, Pavin,1997
Buljan, Paar, 2001     
Bunimovich, Yurchenko, poster

Leaked

 

quantum

 

billiards: chaotic

 

spectroscopy

Doron, Smilansky, 1992

Other
 

aspects
 

of
 

leaking

A recent

 

exact

 

result: two

 

small

 

leaks

 

A and

 

B. The joint

 

escape

 

rate

γe

 

(AB)= γe

 

(A)+ γe

 

(B) + sum

 

of

 

correlation

 

functions

The reason: overlaps

 

of

 

the

 

premiages

Bunimovich, Dettman

 

2007



Poincaré
 

recurrences

Choose

 

a region, I, the

 

recurrence

 
region, in

 

the

 

phase

 

space

 

of

 

a 
closed

 

map. Start a trajectory

 

in

 

I. 
There

 

is a finite

 

probability

 

pr

 

(n)

 

for

 
returning

 

to

 

I  at

 

some

 

finite

 

time

 
instant n. <n>r

 

= finite.

Poincaré

 

recurrences

 

proved

 

to

 

be 
useful

 

analysers

 

of

 

low-dimensional

 
chaotic

 

systems.          
Chirikov, Shepalyansky, 1984

Henri Poincaré (1854-1912)



Known
 

facts:

Recurrence

 

probability

pr

 

(n) ~

 

exp(-γr

 

n),                   γr

 

: decay

 

exponent

 

.

The average

 

recurrence

 

time

< n >r

 

= 1/ μ(I)

 

Kac’s

 

lemma

 

1959

valid

 

for

 

dissipative

 

systems, too

γr

 

≠

 

1/< n >r

 

=  μ(I)

The decay

 

exponent

 

cannot

 

be related

 

to

 

μ(I),

unless

 

μ(I)<<1. 



Recurrence vs leaking

Consider

 

a leaked

 

system

 

with

 

the

 

leak

 

being identical

 

with

 

the

 

recurrence
region

 

I
Altmann, T.T. 2007, 2008

Compare

 

the

 

recurrence

 

and

 

escape

 

distributions: 

For

 

n>n*r

 

For

 

n>n*e

pr

 

(n) =gr

 

exp(-γr

 

n)                                               pe

 

(n) =ge

 

exp(-γe

 

n)

< n >r

 

= 1/ μ(I)                                                        < n >e

 

, n*e , ge
also

 

depend

 

on

 

the

 

initial
distribution

 

ρ0

n*r

 

≠

 

n*e

 

,   < n >r

 

≠ < n >e ,    gr

 

≠ ge



The underlying
 

chaotic
 

saddle

Chaotic

 

saddle

 

of

 

the

 

leaked

 

Hénon

 

attractor

 

(a=1.4, b=0.3); 

the

 

leak

 

I is a circle

 

of

 

radius

 

0.05.  

The same

 

saddle

 

must be visited

 

by

 

trajectories

 

having

 

long

 

recurrence

 

times:

γr

 

= γe



Numerical
 

evidence
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Special
 

initial
 

condition
 

for
 

full
 

equivalence

Consider

 

the

 

density

 

ρI

 

of

 

the

 

natural

 

measure

 

μ

 

inside

 

the

 

leak, I.

Take

 

its

 

first

 

iterate

 

M(ρI

 

) with

 

map

 

M as

 

the

 

initial

 

density

 

for

 

the

escape

 

dynamics

 

of

 

the

 

leaked

 

system: ρ0

 

= M(ρI

 

). 

With

 

this

 

ρ0 the

 

two

 

statistics

 

coincide:               p r

 

(n) = p e

 

(n).

I

M(I)
Γ

1 iteration

escape

T−1 iterations

(closed map)

n-1



Special
 

initial
 

condition
 

for
 

full
 

equivalence

Numerical

 

evidence:

0 10 20 30 40 50 60 70 80 90 100
n
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  p
e(n

)

Red

 

dots: recurrence,      green

 

circles: escape

 

with

 

ρ0

 

=M(ρI

 

)



Conditionally
 

invariant
 

measure
 

for
 

the
 

leaked
 

problem

A central

 

concept

 

in

 

the

 

theory

 

of

 

transient

 

chaos: natural

 

distribution

 

of

 

the

orbits

 

which

 

have

 

not

 

yet

 

escaped: μc

 

Pianigiani, Yorke, 1979

It

 

is concentrated

 

along

 

the

 

unstable

 

manifold

 

of

 

the

 

chaotic

 

saddle.

In

 

general

 

exp(-γe

 

)=μc

 

(nonescaping

 

region

 

in

 

one

 

step)

μc

 

(Γ\I) = μc

 

(Γ) -

 

μc

 

(I) = 1-

 

μc

 

(I)                           Γ:   phase

 

space

γe

 

= -

 

ln(1-

 

μc

 

(I)) 

The c-measure

 

might

 

depend

 

strongly

 

on

 

the

 

location, even

 

if

 

μ(I)

 

does

 

not.

As

 

a consequence:

γr

 

= -

 

ln(1-

 

μc

 

(I))          the

 

decay

 

rate

 

of

 

the

 

recurrence

 

distribution
can

 

be expressed

 

by

 

the

 

c-measure

 

of

 

I.



Hamiltonian
 

systems
 

with
 

KAM tori

For

 

recurrence/leak

 

region

 

far from

 

KAM tori, 

the

 

intermediate-time

 

decay

 

is exponential,

but

 

the

 

asymptotic

 

long-time

 

decay

 

is a power-law:

pr,e

 

(n)

 

~

 

exp(-γr,e

 

n)      n* < n < n c
~

 

1/n σr,e

 

n c

 

< n

There

 

is an

 

underlying

 

nonhyperbolic

 

chaotic

 

saddle



Hamiltonian
 

systems
 

with
 

KAM tori

The chaotic

 

saddle

 

also

 

contains

 

the

 

KAM torus, standard map, K=0.52

Since

 

the

 

saddle

 

is the

 

same

 

for

 

both

 

escape

 

and

 

recurrence:

γr

 

= γe

 

,           σr

 

= σe
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evidence:

Red: recurrence,           black: escape, ρ0

 

= constant

 

outside
γ=0.01

 

of

 

the

 

torus

 

(green

 

region) 

Full

 

equivalence

 

with

 

the

 

red

 

initial

 

condition, ρ0 =M(ρI

 

)



Numerical
 

evidence

nc

 

~ 1/γ

For

 

small

 

γ, the

 

exponential

 

decay

 

is very

 

long.
It

 

is meaningful

 

to

 

split

 

the

 

saddle

 

into

 

a hyperbolic

 

and

 

a nonhyperbolic
component. The hyperbolic

 

one

 

is visited

 

first, the

 

nonhyperbolic

 

one

 

afterwards.

0.001 0.01 0.1
γ

5

10

15
n c 

γ
escape
recurrence

n

The crossover

 

time

 

nc

 

for

 

which

 

exp(-

 

γnc

 

)=nc
-σ

 

scales

 

as:

Altmann, T.T., 2007, 2008



Summary

An

 

unified

 

perspective

 

for

 

leaked

 

systems

 

and

 

Poincaré

 

recurrences

 

is 

obtained, which

 

has not

 

been

 

available

 

earlier, without

 

the

 

use

 

of

leaked

 

dynamics. The description

 

is given

 

in

 

terms

 

of

 

a chaotic

 

saddle, 

the

 

decay

 

exponent

 

can

 

be written

 

in

 

terms

 

of

 

the

 

conditionally

 

invariant

measure.  

Transient

 

chaos

 

generated

 

by

 

leaking

 

dynamical

 

systems

is a useful

 

analyser

 

of

 

permanent

 

chaos.
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