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Motivation

Control of friction during sliding is important for a variety
of applications

Friction can be manipulated by applying small
perturbations to accessible elements and parameters of
the sliding system

[Braiman PRL2003] presents a feedback control scheme
to control friction at the nanoscale

We follow the line of the research to study Lyapunov
stability and design precise control of a one-dimensional
particle array represented by the Frenkel-Kontorova
Model
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The Frenkel-Kontorova Model

- A

A harmonic chain (mimic a layer of nano-particles) in a

spatially periodic potential (mimic the substrate), driven
by a constant force which is damped by a velocity-
proportional damping.
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The FK-Model

Dynamics of a one dimensional particle array
moving on a surface:

. . oU (x; oW (x; — x;
mE; + YT, = — a;_Z) 8;; - fi +n(t)
1 (/

Substrate potential Inter-partlcle potential ' '

External force noise
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The FK-Model

« Under simplifications:
— Sinusoidal substrate potential

— Zero misfit length between the array and the
substrate

— Same force is applied to each particle
— Zero noise

* The simplified FK-model:
¢; +v¢i +sin(¢;) = f+F;

Dimensionless  External force I
Phase variable Particle interaction
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The FK-Model

* Morse-type (nonlinear) particle interaction:

F == {6—5(¢i+1—¢z‘) _ 6—25(@4-1—@)}
B
_B {6_5(¢i_¢i—1) _ 6—25(¢z‘—¢i—1)}
B

« As S —0  the linear particle interaction:

Fy = k(i1 — 20 + bi—1)
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The FK-Model

 We assume free-end boundary conditions:
— For the linear case:

Py = k(g2 — ¢1), Fn = k(on-1 — ¢n).

— For the nonlinear case:

F, = g {6—6(¢2—¢1> _ e—2ﬁ<¢2—¢1>} |
Fy = _% {6—5(¢N—¢N—1) _ 6—25(¢N—¢N—1)} .
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* Open-loop stability of the system without
external force:

b; +v¢i +sin(¢;) = F
* Tracking control using accessible variables:
¢; +v9; +sin(¢;) = F; + u(t)

Design a feedback control law

u(t) = u(vtafrgeta Vems Pem )

where viarget 1S @ pOSitive constant, such that
vem tracks wvigrget, and the tracking error tends

to zero as t tends to oo.
STEVENS
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Problem Formulation

* Accessible variables (average quantities):

The velocity of the center of mass:

1 N
Ucm — Nz;%’

The phase of the center of mass:

1 N
Gem = N@;‘bz
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Open-Loop Stability
¢i + b +sin(e) = F

« State-space representation:
Lil =  X42
Tio = —SINT; — Y2 + 1
where F; has two different forms:
— Linear: F;, = « (qu_l — 2¢; + Qbi—l)

— Nonlinear: FZ — %{e_ﬁ(¢i+l_¢i) _ 6_25(¢i+1_¢i)}
_B {6_5(¢i_¢i—1) _ 6—25(¢i—¢z‘—1)}
B

VENS
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Open-Loop Stability

L;1 = X42

Tio = —sInx; —yxo+ F;

Pendulum equation

S

Equilibrium points of the pendulum equations are
at kn

2km are stable equilibrium
(2k+1)m are unstable equilibrium (saddle points)
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The Equilibrium Points

For nonlinear systemx = f(x), the equilibrium points are
obtained by f(x*)=0

In the case of linear particle interaction, the equilibrium
is at (xi1,X,)=(X;; ,0),where x;,” are solutions to
—sinxi; + k(s — z71) =0,
. b S 3k b S b S
—sinxy; + k(w711 — 225 +2;_11) =0,
1 =2,...,N —1,

. * * * —_
—sinzy, + /ﬁ:(ZCN_l’l —ZNn1) =0
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* An example system: N=3, «=0.26, y=0.1

« The system may have infinite number of
equilibrium points

* Two sets of equilibrium points are at:
— Set 1:

(61,1, P2, b2, b3, h3) = (0.19,0,0.93,0,4.77,0)

— Set 2:
(¢17 ¢217 ¢27 éQa ¢37 ¢3) — (0697 07 3147 07 5597 O)
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The first set of equilibrium points is stable
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(0.19,0,0.93,0,4.77,0)
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The second set of equilibrium points is unstable

(¢17 éla ¢27 ¢&27 ¢37 ¢3) — (0697 07 3147 07 5597 O)
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The Equilibrium Points

In the case of nonlinear particle interaction, the
equilibrium is at (x;,,%,)=(x;,",0),where x.,” are
solutions to

— sin 5’3?1 + % {e—ﬁ(le_xﬂﬁ) _ 6_26(3:;1_%;1)} — ()7
— <in 37:1 + % {6_5($;+1,1_$:;1) _ 6_25(93:+1,1_$:;61)}

B

—sinay, —

K {e—mwa—wr_l,l) _ e—zmxa—xi_l,l*)} —0i=2,....N—1,
% {6—5($}kvl_x}kv_1,1) — 6_25(957\11_337\1—1,1)} — (0
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* An example system: N=3, «=0.26, y=0.1,3="1

« The system may have infinite number of
equilibrium points

* Two sets of equilibrium points are at:
— Set 1:

(61, 1, P2, o, b3, d3) = (0.0001,0,0.0004, 0, 6.28,0)

— Set 2:
(¢17 le, ¢27 Q.52, ¢37 ¢3) — (0017 07 3147 07 6277 O)
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The first set of equilibrium points is stable

(61, 1, P2, o, b3, d3) = (0.0001,0,0.0004, 0, 6.28,0)
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particle position
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The second set of equilibrium points is unstable
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Given a set of equilibrium points,
how to tell its stability without doing
simulations?




Open-Loop Stability with Linear Particle
Interaction

* Linearize around equilibrium (x;,",0), and define
Zil = Zi2
Zio = —COST;12i1 — VZi2 + k(Ziv1.1 — 2251 + 2i—1.1)

. %k k %k %k _
—sinxy; +K(xi 1  — 2% +x;_1)| =0

*
= —COST; %1 — V%2 + k(Zix1.1 — 221 + 2i—1.1)
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« Stacking the equations for i=1,2,...,N:

z = Az+4+ BFz

A=IN®A;,B=In®B;,F=Q®|[1 0],

0 1 0

—K — COS T, K 0 . 0 ]
K —2K —COST5; K 0
Q =
0 o K —2K—COSTH_q; K
i 0 0 K —K — COSThq| _
STEVENS
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Open-Loop Stability with Linear Particle
Interaction

e Theorem 1:

The open-loop system with linear particle
iInteraction is locally asymptotically stable at the
equilibrium points (x;,",0) if all of the eigenvalues
of the matrix Q have negative real parts; it is
unstable if any of the eigenvalues of the matrix
Q has a positive real part.
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 Particularly, we have the following cases:

A If cosx}; > 0 for all 7 with strict sign for at least one ¢, () is Hurwitz and
the system is asymptotically stable;

. If cosx; = 0 for all ¢, @ has one (and only one) cigenvalue 0. The
linearized system is marginally stable and the stability of the original
nonlinear system could be cither stable or unstable;

At coszy; <0 for all 2 with strict sign for at least one ¢, ) has at least one
positive eigenvalue. The system is unstable;

. Ifcosz},7=1,..., N have mixed signs, the system could be either stable
or unstable and numerical calculations is necessary to determine the sign
of the real parts of the eigenvalues of Q).
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Open-Loop Stability with Linear Particle
Interaction

« Special cases:
— 2Km are stable equilibrium
— (2k+1)r are unstable equilibrium

Y. Guo, Z. Qu, and Z. Zhang, "Lyapunov stability and precise control of the
frictional dynamics of a one-dimensional particle array”, Physical
Review B, Vol. 73, No. 9, 2006.
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* Outline of proof:

Define a similarity transformation z = T'C. In the new coordinate, the system
dynamics is ¢ = HC.

Since () is a real symmetric matrix, there exists a unitary matrix 1" such
that T-'QT = D where D is a diagonal matrix of eigenvalues of Q.

Let the transformation matrix be

T = T®I (1)

where I5 is the 2 x 2 identity matrix. We can obtain H = diagH;; and

Hii:[O 117

o =Y

where «;,7 = 1,2,..., N are eigenvalues of ().
The sign of «; determines whether the eigenvalues of H,;; have negative real
parts at the equilibrium point.
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Open-Loop Stability with Linear
Particle Interaction

« Checking the two simulation examples:

— Set1: (¢1, 01, da, da, b3, d3) = (0.19,0,0.93,0,4.77,0)
c0s(0.19)>,c0s(0.93)>0,cos(4.77)>0, case 1,
asymptotically stable;

— Set 2: (61,61, ¢2, ¥2, ¢3, $3) = (0.69,0,3.14,0,5.59,0)
c0s(0.69)>0,cos(3.14)<0,cos(5.59)>0, case 4,
check eigenvalues of Q, ™unstable system.

Q= eig(Q) =
-1.0312 0.2600 0 -1.1150

0.2600 0.4800 0.2600 -1.0302

0 0.2600 -1.0292 0.5648
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Open-Loop Stability with Nonlinear Particle
Interaction

« Recall that the equilibrium points are at
(Xi4,Xi5)=(X4",0),where X, are solutions to

g

K * * * *
- Sil’l le —|_ — {G_B(xi-i-l,l_xil) —_ 6_2/8(xi—|—1,1_x7;1)}

5
R {6—5(35:1_95:—1,1) _ 6_26(56:1_%_1’1*)} — O,’L — 2’ e N — 1’

g

_Sinx}k\[]- _ % {e_ﬁ(xi\fl_x?\f—l,l) _ 6_2ﬁ(x7\]1—$?\{_1’1)} — O
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« Linearize the system around its equilibrium (x.,",0), and
Zil = 22
,7;’1'2 — — COS 513:127;1 — YZi2
et

—I_B _6_5(33:;+1,1_33:;<1) + 26_25(33:+1,1_33:;<1)] (Zz'—l—l,l _ Zﬂ)

B —e 5(%,1 337;—1,1) + 2¢e 26(x;; xz—l,l)i| (Zz'l _Zz'—l,l)
*
= —cosx; %1 — V&2 Heil(ziv1,1 — #i1)

—Cid(zi1 — zi—11) \

- Coupling coefficients

* Notice the same structure as in the linear interaction case
with different coupling coefficients
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Stacking the equations for i=1,2,...,N:
¢ = Az+ BFz

A=Iy®A;,B=Iy®B;,F=Q®[1 0],

A [0 1 ] B [0 ]
T — { 0 y Dg — ’
— J { 1 J
[ —c11 — cosxly c11 0 . 0
Co1 —(c21 + c22 + cosxh) Co9 0
0 cn—11 —(cn—11+eN—12 —|—cosxi}‘v_1’1) CN—12
0 . 0 CN2 —CN2 — COSTNy |
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Open-Loop Stability with Nonlinear Particle
Interaction

e Theorem 2:

The stability of the nonlinear system is locally
asymptotically stable at the equilibrium points
(x;,",0) if all of the eigenvalues of the matrix Q
have negative real parts; it is unstable if any of
the eigenvalues of the matrix Q has a positive
real part.
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Open-Loop Stability with Nonlinear
Particle Interaction

* Checking the two simulation examples:
— Set 1 (¢17 le, §b27 ¢27 ¢37 ¢3) (O 0001 0 0. 00047 07 6287 O)

Q= eig(Q) =
-1.2598 0.2598 0 -1.2395
-0.0005 -1.2593 0.2598 -1.0000

0 0.5195 -1.5195 -1.7790

=» asymptotically stable;
_ Set 2: (¢1, 91, P2, $2, @3, #3) = (0.01,0,3.14, 0, 6.27, 0)

Q= eig(Q) =
-0.9896 -0.0104 0 -0.9896
-0.0104 1.0207 -0.0104 1.0187

0 0.5086 -1.5085 -1.5065

=% unstable system. STEVENS
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Tracking Control Design

- Design feedback control u(t) such that ¢ tracks a
constant targeted velocity, Vtarget

i+ vdi +sin(p) = K (dig1 — 20 + dim1) +u(t)
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Tracking Control Design

« Define average error states:
€lav — ¢cm — Uta'r'getty €2av — Uem — Utarget

State-space model:

élav =  €2qu
1 N
é2av - N Zl SIn ezl + Uta?“gett) 7(620,1) + Uta?“get)
1=
+u(t)
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Tracking Control Design

 Theorem 3:
The following feedback control law renders the
error states of the closed-loop system bounded:

U(t) — ’yvtarget — €lagv — (Cl - 7)620,1)
(Cl + C2)€ + Sin(vta'rgett)

—  YVtarget — vta'rgett)
_]{72 @'ﬁ)/’btarget + sin Utargett)

Average quantities
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Tracking Control Design

* Qutline of proof:

— Choose Lyapunov function candidate:

1 1
W = 56%0&) + §(Clelav + 62@?))2

— Along the closed-loop dynamics, we have:

i 1
W < —ci(ef,, +&°)+ .

where where & = c,e,,,1 €5,
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Tracking Control Design

— We obtain:
. 1
W av S 07 \v/ av? 2
(€av) (100 =
— The ultimate bound of ||e, || is:

)\max(P) 1+ 02 C1
- h P = 1
b \/Cl Co )\2 (P) wnere [ C1 1

min

— This indicates that by choosing c,, c, appropriately,
the error states can be made arbitrarily close to zero.
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Tracking Control Design

* To achieve asymptotically tracking, the following
switching-type control law can be used:

U(t) —  YUtarget — kl (¢cm — Uta/rgett)

_kZ (Ucm _ vtarget) + Sin(vtafr‘gett) _

|

switching
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Velocity of the Center of Mass

error states of the center of mass
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However, individual particles are not
necessarily stable in the closed-loop system
under average control!!
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Single Particle Dynamics

error states of individual particles
error states of individual particles
o

_8 1 1 1 1 1 1 1 _4 1 1 1 1
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

time time

The phase variable of individual particles The velocity variable of individual particles
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Stability of Single Particles in the
Closed-Loop System

» Define error states of individual particles:

€1 — ¢z — Utargetta €2 — ¢z — Utarget

* Representing error dynamics:

€1 = €;2

éio = —vei+k(eir11 —2€1+e—11)— 7‘61 kz

+ [Sin(’Utargett) — sin(eil + Utargett)] \ e
Average control
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e Theorem 4:

For system parameters v and « that satisfy

1
K > ; ,
min;<y—1 (k)
1
Y2 .
v/ming<y—1(pi)r — 1
where p;,i = 1,..., N — 1 are the positive eigenvalues of the matrix (—@Q), the

average control asymptotically stabilize the error system if k1 and ks are chosen
to satisfy

ki > 1 - ko > 0.
1 = /ﬁsig\}gl(ﬂz), 2 =
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Single Particle Dynamics

* This indicates that under certain conditions on
system parameters (y, ), single particles can be
stabilized under the average control, i.e., the
error system of individual particles is
asymptotically stable.
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* Outline of proof:
We re-present the error system in the following form:
E = GE+ f(e,t)
We show that under the transformation matrix T'=V ® I, we have
T 1GT = diagC,;.
Using the Lyapunov function
W(t,e)=FE"HE = E'"TPT'E=E"(Iy ® P,)E

we obtain

Wi(t,e) = FE'(diagS;)FE

We showed that under conditions on 7, s, the stability margin of the linear

part of the system dominates the nonlinear part.
VEN
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Velocity of the Center of Mass

Simulation Results
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Tracking control of the average system
(a) the velocity of the center of mass, (b) the control.
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error states of individual particles
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(a) (b)
Error states for individual particles in the closed-loop system
(a) the phase variables, (b) the velocity variables.
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Conclusions

* Motivated by friction control at the nanoscale, we
considered the stability and tracking control of
the nonlinear interconnected system
represented by the FK-model

« Control theoretical methods are used to analyze
the stability of open-loop system, and to design
tracking control law utilizing average quantities

only
« Matlab simulations verified theoretical results
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Future Research
(Other Applications)

» Directed motion is induced by breaking the
symmetry of particle interactions ss molecular car

mT; + T = OU)  OWAEi = 2j) - fi +n(t)

8:52' 8:137;
AN

. \ K -f)
Wix; _373) — l”xz _xJH _ FK model
/%;g Nonsymmetrlc interactions

M. Porto, M. Urbakh, and J. Klafter. Atomic scale engines: Cars and
wheels. Physical Review Letters, 84(26):6058-6061, 2000.
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Future Research

« Control theoretical methods can be applied to
generate analytic results for precise control of
the “molecular car”

* But the real challenge is how to implement it?
* A "molecular highway” in the future?
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Thank you for listening!
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