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Motivation
• Control of friction during sliding is important for a variety 

of applications
• Friction can be manipulated by applying small 

perturbations to accessible elements and parameters of 
the sliding system

• [Braiman PRL2003] presents a feedback control scheme 
to control friction at the nanoscale

• We follow the line of the research to study Lyapunov
stability and design precise control of a one-dimensional 
particle array represented by the Frenkel-Kontorova
Model 



The Frenkel-Kontorova Model

A harmonic chain (mimic a layer of nano-particles) in a 
spatially periodic potential (mimic the substrate),  driven 
by a constant force which is damped by a velocity-
proportional damping.



The FK-Model

• Dynamics of a one dimensional particle array 
moving on a surface:

Substrate potential Inter-particle potential

External force noise



The FK-Model

• Under simplifications:
– Sinusoidal substrate potential
– Zero misfit length between the array and the 

substrate
– Same force is applied to each particle
– Zero noise

• The simplified FK-model:

Particle interaction
External forceDimensionless 

Phase variable



The FK-Model
• Morse-type (nonlinear) particle interaction:

• As , the linear particle interaction:0→β



The FK-Model

• We assume free-end boundary conditions:
– For the linear case:

– For the nonlinear case:



Problem Formulation

• Open-loop stability of the system without 
external force:

• Tracking control using accessible variables:



Problem Formulation

• Accessible variables (average quantities):
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Open-Loop Stability

• State-space representation:

where Fi has two different forms:
– Linear: 

– Nonlinear: 



Open-Loop Stability

Pendulum equation θ

Equilibrium points of the pendulum equations are
at kπ

2kπ are stable equilibrium 
(2k+1)π are unstable equilibrium (saddle points)



The Equilibrium Points
• For nonlinear system , the equilibrium points are 

obtained by f(x*)=0

• In the case of linear particle interaction, the equilibrium 
is at (xi1,xi2)=(xi1

*,0),where xi1
* are solutions to

)(xfx =&



• An example system: N=3, κ=0.26, γ=0.1
• The system may have infinite number of 

equilibrium points
• Two sets of equilibrium points are at:

– Set 1: 

– Set 2:



Matlab Simulation

The first set of equilibrium points is stable



Matlab Simulation

The second set of equilibrium points is unstable



The Equilibrium Points

• In the case of nonlinear particle interaction, the 
equilibrium is at (xi1,xi2)=(xi1

*,0),where xi1
* are 

solutions to



• An example system: N=3, κ=0.26, γ=0.1,β=1
• The system may have infinite number of 

equilibrium points
• Two sets of equilibrium points are at:

– Set 1: 

– Set 2:



Matlab Simulation

The first set of equilibrium points is stable



Matlab Simulation

The second set of equilibrium points is unstable



Given a set of equilibrium points, 
how to tell its stability without doing 

simulations?



Open-Loop Stability with Linear Particle 
Interaction

• Linearize around equilibrium (xi1
*,0), and define 

new states zi1=xi1-xi1
*, zi2=xi2  we have

=0



• Stacking the equations for i=1,2,…,N:



Open-Loop Stability with Linear Particle 
Interaction

• Theorem 1:
The open-loop system with linear particle 
interaction is locally asymptotically stable at the 
equilibrium points (xi1

*,0) if all of the eigenvalues
of the matrix Q have negative real parts; it is
unstable if any of the eigenvalues of the matrix 
Q has a positive real part. 



Open-Loop Stability with Linear Particle 
Interaction

• Particularly, we have the following cases:



Open-Loop Stability with Linear Particle 
Interaction

• Special cases:
– 2kπ are stable equilibrium 
– (2k+1)π are unstable equilibrium

Y. Guo, Z. Qu, and Z. Zhang, "Lyapunov stability and precise control of the 
frictional dynamics of a one-dimensional particle array", Physical 
Review B, Vol. 73, No. 9, 2006.



• Outline of proof:



Open-Loop Stability with Linear 
Particle Interaction

• Checking the two simulation examples:
– Set 1:

cos(0.19)>,cos(0.93)>0,cos(4.77)>0, case 1, 
asymptotically stable;

– Set 2:
cos(0.69)>0,cos(3.14)<0,cos(5.59)>0, case 4, 
check eigenvalues of Q,     unstable system.

eig(Q) =

-1.1150
-1.0302
0.5648

Q =

-1.0312    0.2600         0
0.2600    0.4800    0.2600

0        0.2600   -1.0292



Open-Loop Stability with Nonlinear Particle 
Interaction

• Recall that the equilibrium points are at 
(xi1,xi2)=(xi1

*,0),where xi1
* are solutions to



• Linearize the system around its equilibrium (xi1
*,0), and 

define new states zi1=xi1-xi1
*, zi2=xi2  we have

• Notice the same structure as in the linear interaction case 
with different coupling coefficients

Coupling coefficients



• Stacking the equations for i=1,2,…,N:



Open-Loop Stability with Nonlinear Particle 
Interaction

• Theorem 2:
The stability of the nonlinear system is locally 
asymptotically stable at the equilibrium points 
(xi1

*,0) if all of the eigenvalues of the matrix Q 
have negative real parts; it is unstable if any of 
the eigenvalues of the matrix Q has a positive 
real part.



Open-Loop Stability with Nonlinear 
Particle Interaction

• Checking the two simulation examples:
– Set 1:

asymptotically stable;
– Set 2:

unstable system.

Q =

-1.2598    0.2598         0
-0.0005   -1.2593    0.2598

0    0.5195   -1.5195

eig(Q) =

-1.2595
-1.0000
-1.7790

Q =

-0.9896   -0.0104         0
-0.0104    1.0207   -0.0104

0    0.5086   -1.5085

eig(Q) =

-0.9896
1.0187
-1.5065
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Tracking Control Design

• Design feedback control u(t) such that      tracks a 
constant targeted velocity, 

iφ&

ettv arg



Tracking Control Design

• Define average error states:

• State-space model: 



Tracking Control Design

• Theorem 3:
The following feedback control law renders the 
error states of the closed-loop system bounded: 

Average quantities



Tracking Control Design

• Outline of proof:
– Choose Lyapunov function candidate:

– Along the closed-loop dynamics, we have:

where where ξ =  c1e1av+e2av



Tracking Control Design
– We obtain:

– The ultimate bound of ||eav|| is:

– This indicates that by choosing c1, c2 appropriately, 
the error states can be made arbitrarily close to zero.



Tracking Control Design

• To achieve asymptotically tracking, the following 
switching-type control law can be used:

switching



Matlab Simulation

Tracking control performance 
for targeted velocity vtarget=3



Tracking control performance 
for targeted velocity vtarget=1.5



However, individual particles are not 
necessarily stable in the closed-loop system 
under average control!!



Single Particle Dynamics

The phase variable of individual particles The velocity variable of individual particles
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Stability of Single Particles in the 
Closed-Loop System

• Define error states of individual particles:

• Representing error dynamics:

Average control



• Theorem 4:



Single Particle Dynamics

• This indicates that under certain conditions on 
system parameters (γ, κ), single particles can be 
stabilized under the average control, i.e., the 
error system of individual particles is 
asymptotically stable.



• Outline of proof:



Simulation Results

Tracking control of the average system 
(a) the velocity of the center of mass, (b) the control.

(a) (b)



Simulation Results

Error states for individual particles in the closed-loop system
(a) the phase variables, (b) the velocity variables.

(a) (b)



Conclusions
• Motivated by friction control at the nanoscale, we 

considered the stability and tracking control of 
the nonlinear interconnected system 
represented by the FK-model

• Control theoretical methods are used to analyze 
the stability of open-loop system, and to design 
tracking control law utilizing average quantities 
only 

• Matlab simulations verified theoretical results



Future Research 
(Other Applications)

• Directed motion is induced by breaking the 
symmetry of particle interactions molecular car

Nonsymmetric interactions

FK model

M. Porto, M. Urbakh, and J. Klafter. Atomic scale engines: Cars and 
wheels. Physical Review Letters, 84(26):6058–6061, 2000.



Future Research

• Control theoretical methods can be applied to 
generate analytic results for precise control of 
the “molecular car”

• But the real challenge is how to implement it?
• A “molecular highway” in the future?



Thank you for listening!
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